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Abstract:
This projects aims to examine, analyze, and explain seemingly random and unpredictable movements in
foreign exchange rates, potentially informing future investment and asset allocation problems. We gathered
years of daily exchange rates for numerous currencies and tried to find interesting relationships between
them. By normalizing the exchange rates, we were able to put currencies side by side to find mutual changes
that can later be generalized to provide useful and relevant information for prediction. By utilizing linear
models and feature imporances, we found that aggregating multiple currencies and analyzing their behavior
can help explain volatility in another currency. To more accurately test and integrate our findings, we
suggest simulating investment actions like buying and selling based on movements that we've addressed in
our linear models. Additionally, more advanced forcasting models should be used to see more robust
results.

Introduction:
The Foreign Exchange market is a global market for the trade of currencies. In free economies, the value of
currencies are based off supply and demand. In some instances, countries peg their currency on another,
meaning their currency moves in line with another. The fluctuation of currencies can also give economic
indicators, such as which economies move in line with one another and the effect of current events. Further,
there are many factors that affect currency value, such as trade investment, tourism, and geopolitics.
Inflation is a very influential economic phenomenon, and on top of influencing unemployment, it can have
an effect on foreign exchange rates.

We are analyzing how the fluctuation of one currency can predict the fluctuation of another.



Data Description:
To wrangle foreign exchange rates, request calls were made to ExchangeRate API. These calls provided time-
series data for each of the specified currencies. Because of the flexibility of the API, there were several
customizable parameters to fine-tune the API request (date range, source, amount, base, etc). The API was
limiting each request to 2 years of daily data, so we made functions to make multiple requests between our
start and end dates and concatenating them together. The final result was about 13 years of daily exchange
rates for multiple currencies (~4,700 rows).

Pipeline Overview:
We accomplished this task with the following functions:

API and Formating Functions:
api_req()

Makes an initial request to the API that includes time-series data of all of our desired parameters
using Python's kwargs feature.

merge_df_by_year()

Merge multiple years worth of data into one dataframe because the API limits us to 2 years of data
per request.

Analysis and Visualizations:
scale_cur()

Scales the currencies to be between 0 and 1 using MinMaxScaler, helping with plotting and
analyzing.

moving_avg()
Calculates a moving average of every currency of the dataframe using a specified window.

calc_pct_change()

https://exchangerate.host/#/#docs


Calculates the percentage change between all values, helping to normalize and analyze.

Machine Learning
r2_scoring()

Calculates R2 of cross-validated simple linear regression model.
randomness_test()

Checks variable independence, constant variance, and normality assumptions for linear regression.
get_mse()

Calculate the Mean Squared Error between true and predicted values.
show_fit()

Plot the fit of the linear regression with associated metrics.
disp_regress()

Runs a multiple regression model and calculates the r2 of the model.
plot_feat_import()

Plot importance of features in a multiple regression model.
disp_rfr_regress()

Runs a random forest regression model and calculates the r2 of the model.

In [242… import requests 
from pprint import pprint 
import pandas as pd 
import warnings 
import matplotlib.pyplot as plt 
import seaborn as sns 
warnings.filterwarnings("ignore") 
from sklearn.preprocessing import MinMaxScaler 
from sklearn.ensemble import RandomForestRegressor 
import numpy as np 
from sklearn.linear_model import LinearRegression 
import pylab as py 
import scipy.stats as stats 
from sklearn.metrics import r2_score 
from sklearn.model_selection import KFold 

In [243… def api_req(**kwargs): 
    ''' 
    This function calls an exchange rate api and builds a df with the data 
    A list of strings (currencies) is a parameter 
    returns a transpose dataframe where the dates are the indices 
 
    Params for API call kwargs: 
        start_date [required] String format (YYYY-MM-DD) 
        end_date [required] String format (YYYY-MM-DD) 
        base. example:base=USD 
        symbols [optional] Enter a list of comma-separated currency codes to limit outpu
            currencies. example:symbols=USD,EUR,CZK 
        amount [optional] The amount to be converted. example:amount=1200 
        places [optional] Round numbers to decimal place. example:places=2 
        source [optional] You can switch source data between (default) forex, bank view 
    ''' 
 
    params = kwargs 
    url = 'https://api.exchangerate.host/timeseries?' 
     
    # Query the API call 
    response = requests.get(url, params=params) 
    data = response.json() 



DKK EUR GBP RUB

2021-01-01 6.092900 0.821300 0.731368 73.944993

2021-01-02 6.092899 0.824063 0.731368 73.944989

2021-01-03 6.082472 0.817388 0.731935 74.108816

2021-01-04 6.073148 0.816286 0.736620 73.532982

2021-01-05 6.049919 0.813219 0.734071 74.170118

... ... ... ... ...

2021-12-28 6.571598 0.884210 0.744312 73.642400

2021-12-29 6.548574 0.880921 0.741268 73.951951

2021-12-30 6.560552 0.882704 0.740360 74.703970

2021-12-31 6.538054 0.879286 0.739386 74.767039

2022-01-01 6.538991 0.879665 0.739946 74.778424

366 rows × 4 columns

JPY DKK GBP RUB AUD EUR

2010-01-01 92.918694 5.171022 0.618138 29.988881 1.113482 0.694927

2010-01-02 92.918694 5.171022 0.618138 29.988881 1.113482 0.694927

 
    return pd.DataFrame(data['rates']).T 
 
api_req(start_date='2021-01-01', end_date='2022-01-01', base='USD', symbols='GBP,RUB,EUR

Out[243]:

In [244… def merge_df_by_years(start_year, end_year, **kwargs): 
    ''' 
    Creates a dataframe containing the exchange rates from the start year to the end yea
    Merge multiple years worth of data into one dataframe from the API call because it l
    the amount of row in a request. 
    :param start_year (int): 
    :param end_year (int): 
     
    :return: DataFrame 
    ''' 
 
    df_output = pd.DataFrame() 
     
    # Iterate through the the desired years 
    for year in range(start_year, end_year + 1): 
        params = { 
            'start_date': f'{year}-01-01', 
            'end_date': f'{year}-12-31', 
        } 
        # Update the params with the other input params 
        kwargs.update(params) 
        df_year = api_req(**kwargs) 
         
        # Stack all the dataframes because of the API limitting 
        df_output = pd.concat([df_output, df_year]) 
    df_output.dropna(inplace=True, axis=0) 
    return df_output 
 
df = merge_df_by_years(2010, 2022, symbols='GBP,EUR,RUB,JPY,AUD,DKK', base='USD')  
df 

Out[244]:



2010-01-03 92.918694 5.171022 0.618138 29.988881 1.113482 0.694927

2010-01-04 92.477815 5.158902 0.620632 30.297421 1.095743 0.693289

2010-01-05 91.556453 5.179730 0.625226 29.990185 1.096478 0.696088

... ... ... ... ... ... ...

2022-11-26 139.066126 7.150801 0.826859 60.724338 1.481637 0.960409

2022-11-27 139.195055 7.163304 0.828812 60.465997 1.487295 0.963244

2022-11-28 138.842107 7.186891 0.836411 61.497540 1.503762 0.966926

2022-11-29 138.563847 7.194675 0.836730 60.794571 1.495866 0.968067

2022-11-30 138.544837 7.177607 0.834140 60.847765 1.492575 0.965295

4717 rows × 6 columns

JPY DKK GBP RUB AUD EUR

2010-01-01 0.231092 0.053851 0.100801 0.028231 0.248591 0.057518

2010-01-02 0.231092 0.053851 0.100801 0.028231 0.248591 0.057518

2010-01-03 0.231092 0.053851 0.100801 0.028231 0.248591 0.057518

2010-01-04 0.225159 0.049412 0.107887 0.030892 0.227344 0.053085

2010-01-05 0.212761 0.057041 0.120938 0.028243 0.228224 0.060660

... ... ... ... ... ... ...

2022-11-26 0.852072 0.778922 0.693760 0.293287 0.689552 0.775967

2022-11-27 0.853807 0.783501 0.699309 0.291059 0.696329 0.783639

2022-11-28 0.849058 0.792140 0.720897 0.299955 0.716052 0.793603

2022-11-29 0.845314 0.794990 0.721803 0.293892 0.706595 0.796691

2022-11-30 0.845058 0.788739 0.714445 0.294351 0.702653 0.789189

4717 rows × 6 columns

In [245… def scale_cur(df): 
    ''' 
    Scales the exchange rates for a dataframe of currencies 
    df- dataframe 
    returns a scaled dataframe 
    ''' 
 
    cols = df.columns 
    # fitting a scaler to make the data comparable visually 
    scaler = MinMaxScaler() 
    df_scaled = scaler.fit_transform(df.to_numpy()) 
    df_scaled = pd.DataFrame(df_scaled, columns=cols) 
 
    # updating indexes to be dates 
    df_scaled.index = df.index 
    return df_scaled 
 
df_scaled = scale_cur(df) 
df_scaled 

Out[245]:

In [246… def moving_avg(df, roll, *curs, scale=True): 



    ''' 
    Creates a moving average plot for a given number of currencies and their moving aver
    df - dataframe, roll - int and number of days to be smoothed, *curs - list of curren
    returns an updated df and a plot 
    ''' 
    fig, ax = plt.subplots() 
 
    # Creating label based off graph type 
    plt.xlabel('Date') 
    if scale: 
        plt.ylabel('Scaled Exchange Rate') 
        plt.title('Scaled Currencies and Rolling Averages Time-Series') 
    else: 
        plt.ylabel('Exchange Rate') 
        plt.title('Currencies and Rolling Averages Time-Series') 
 
    # iterating across currencies 
    for cur in curs: 
        cur_idx = cur + '_avg' 
        # creating a rolling mean column and plotting both 
        df[cur_idx] = df[cur].rolling(roll).mean() 
        if scale: 
            df[[cur_idx]].plot(ax=ax,label='ROLLING AVERAGE', 
                                  figsize=(16, 8)) 
        else: 
            df[[cur, cur_idx]].plot(ax=ax,label='ROLLING AVERAGE', 
                                  figsize=(16, 8)) 
    return df 
 
df_usd = moving_avg(df, 30,'GBP','EUR','RUB', scale=False) 
df_usd_scaled = moving_avg(df_scaled, 30, 'GBP', 'EUR', 'RUB', scale=True) 
plt.show() 



Important Note:
Although scaled, the y-axis still represents the exchange rate in relation to the US Dollar. In other words,
when a currencie's exchange rate is incresasing on the chart, it's value lessens because it takes more of that
currency to trade for $1. Because of this, movements are interpreted opposite to your intution. Decrease is
good and increase is bad.

Interpretation:
By exploring the above graph, we can see a few key takeaways. First, we can see very clearly that global
events and/or crises can be seen reflected on a countries exchange rate plot. Namely, we can see the
European Debt Crisis in 2015, Brexit at the end of 2020, and Russia's economic downfall after their invasion
of Ukraine. Additionally, by looking at these exchange rates on top of each other, we can begin to see the
relationships between currencies. Specificically, we can see that the overall, long-term trend of each currency
decreases in value. Looking closely, we can see that GBP tends to follow EUR but not immediately. In other
words, GBP appears to have a delayed response to changes in the EUR.

In [247… def calc_pct_change(df): 
    """ 
    Calculates the pct change between each observation in the dataframe 
    Params: 
        df(DataFrame): a dataframe of time-series exchange rates 
    """ 
    pct_df = df.pct_change() 
     
    # Rename each of the columns for the pct change 
    for col in pct_df.columns: 
        pct_df.rename(columns={col: col+"_pct_change"}, inplace=True) 
     
    # Concat the original with pct change df 
    return pct_df, pd.concat([df, pct_df], axis=1) 



Analysis:
We will analyze our time-series data of the currencies using different linear models such as basic linear
regression and multiple linear regression and comparing these models to determine which one yields
the best results.

We can incorporate our scaled exchange rate info and percent changes to make more sense of currency
pegs and the fluctuation of excgange rates.

Additionally, regression of various currencies can be calculated and analyzed to determine which
currencies track with one another.

In [248… df = merge_df_by_years(2010, 2022, symbols='GBP,EUR,RUB,JPY,AUD,DKK', base='USD') 
pct_df, pct_concated = calc_pct_change(df) 

In [249… sns.pairplot(pct_df.dropna(axis=0)) 
plt.show() 



Interpretation:
The above pairplot allows us to easily inspect each pairwise relationship. Instead of looking at raw exchange
rates, we are now looking at percent change which normalizes the scales and removes the time variable in a
way. We can see that, for the most part, there isn't an immediate relationship between currencies, apart for
DKK and EUR. This can actually be explained by the fact that DKK has a fixed exchange rate policy with EUR,
meaning they should have identical movements. We will move into more advanced techniques to better
characterize the movement in a currency.

Machine Learning
Our chosen machine learning tools were Linear Regression and Multiple Regression.

Regression for percent change analysis



Regression was chosen as we wanted to see if there was a linear relationship between the percentage
change of the Euro and the Pound. We chose these currencies as they are extremely popular and both used
in Europe, and even with the British exit from the European Union, it is useful to see the data up until and
after this exit.

0.3326983827591897

In [250… def r2_scoring(df, col1, col2, n_splits): 
    """ 
    This runction calculates the R2 Score of a simple linear regression 
     
    Params: 
        df (DataFrame): The dataframe containing all the data 
        col1 (String): the name of x axis feature 
        col2 (String): the name of the y axis feature 
        n_splits(int): Number of folds for kfold cross validation 
    """ 
    # Seperate features and targets 
    x = np.array(df[col1])[1:].reshape(-1, 1) 
    y = np.array(df[col2])[1:] 
     
    # Create KFold object 
    kfold = KFold(n_splits=n_splits) 
 
    # Create Regression object 
    reg = LinearRegression() 
 
    # Empty array to fill in with predictions 
    y_pred = np.empty_like(y) 
 
    for train_idx, test_idx in kfold.split(x, y): 
        # get training data 
        x_train = x[train_idx, :] 
        y_train = y[train_idx] 
         
        # get test data     
        x_test = x[test_idx, :] 
 
        # fit data 
        reg = reg.fit(x_train, y_train) 
 
        # estimate on test data 
        y_pred[test_idx] = reg.predict(x_test) 
     
    return r2_score(y_true=y, y_pred=y_pred) 

In [251… r2_scoring(pct_df, 'GBP_pct_change', 'EUR_pct_change', 10) 

Out[251]:

In [252… def randomness_test(df, col1, col2): 
    ''' 
    This function checks the independence of 2 columns of the percent change df 
    Parameters: df - dataframe, col1 and col2 - strings with col names 
    Returns x and y lists, slope and intercept floats, and makes plots 
    ''' 
    #Checking Independence 
    # getting rid of na vals and reshaping 
    x_na = np.array(df[col1]) 
    x = x_na[np.logical_not(np.isnan(x_na))].reshape((-1, 1)) 
     
    # getting rid of na vals 
    y_na = np.array(df[col2]) 
    y = y_na[np.logical_not(np.isnan(y_na))] 
     



    reg = LinearRegression() 
    reg.fit(x, y) 
 
    # same as b_1 
    slope = reg.coef_[0] 
 
    # same as b_0 
    intercept = reg.intercept_ 
     
    y_pred_bmg = slope * x + intercept 
     
    # plotting using index and error vals 
    errors = y.reshape((-1,1)) - y_pred_bmg 
    plt.scatter(x = range(len(y)), y = errors) 
    plt.xlabel('index') 
    plt.ylabel('errors') 
    plt.show() 
     
    # Checking Constant Variance 
    plt.scatter(x = x, y = errors) 
    plt.xlabel(col1) 
    plt.ylabel('errors') 
    plt.show() 
     
    # Checking Normality 
    stats.probplot(errors.reshape((-1,)), dist="norm", plot=py) 
    py.show() 
     
    return x, y, slope, intercept 

In [253… def get_mse(y_true, y_pred): 
    ''' 
    Calculates the mean squared distance between the predicted and actual y 
    Takes 2 lists, y_true and y_pred 
    Returns a mean squared error value 
    ''' 
    # calculate the mean squared distance between the predicted and actual y 
    return np.mean((y_pred - y_true) ** 2) 
 
 
def show_fit(x, y, slope, intercept): 
    ''' 
    This function creates a linear regression 
    Parameters - x and y are lists, slope and intercept are floats 
    Returns nothing, creates a linear regression plot 
    ''' 
    plt.figure() 
     
    # transform the input data into numpy arrays and flatten them for easier processing 
    x = np.array(x).ravel() 
    y = np.array(y).ravel() 
     
    # plot the actual data 
    plt.scatter(x, y, label='data') 
     
    # compute linear predictions  
    # x is a numpy array so each element gets multiplied by slope and intercept is added 
    y_pred = slope * x + intercept 
     
    # plot the linear fit 
    plt.plot(x, y_pred, color='black', 
             ls=':', 
             label='linear fit') 
     
    plt.legend() 



     
    plt.xlabel('x') 
    plt.ylabel('y') 
     
    # print the mean squared error 
    y_pred = slope * x + intercept 
    mse = get_mse(y_true=y, y_pred=y_pred) 
    R2_easy = r2_score(y_true=y, y_pred=y_pred) 
    plt.suptitle(f'y_hat = {slope:.2f} * x + {intercept:.5f}, RMSE = {mse**0.5:.3f}, R^2 
    plt.show() 

In [254… # Testing the data on 3 tests to see if it is random and possible to use a regression on 
x, y, slope, intercept = randomness_test(pct_df, 'GBP_pct_change', 'EUR_pct_change') 



The first plot shows that there is no relationship between index and error, meaning the values are random.
The second plot shows that there is no relationship between healing done and error, meaning different
pound percent change values have random error values. Finally, the probability plot further conveys that the
data is random and worth using as the quantile points match a 45 degree line with ordered values. In
conclusion, because we are meeting these random assumptions, the model is useful and should be used.

In [255… show_fit(x, y, slope, intercept) 



0.9901378350577448

In [256… # Now looking at the DKK and the EUR 
r2_scoring(pct_df, 'DKK_pct_change', 'EUR_pct_change', 10) 

Out[256]:

In [257… # Now testing DKK and EUR data on 3 tests to see if it is random and possible to use a r
x, y, slope, intercept = randomness_test(pct_df, 'DKK_pct_change', 'EUR_pct_change') 





The first plot shows that there is a relationship between index and error, as all indices have similar errors,
meaning the values are not random. The second plot shows that there is a relationship between DKK
percent changes and error, meaning different pound percent change values have virtually the same error
values (close to 0). Finally, the probability plot further conveys that the data is not random and not worth
using as the quantile points do not match a 45 degree line with ordered values. In conclusion, the model is
not random and therefore not useful, however it would be interesting to visualize and see why.

In [258… show_fit(x, y, slope, intercept) 



Multiple regression for percent change analysis
Multiple regression was chosen as we wanted to see if there was a relationship between the percentage
changes of the EU non-Euro countries and the Euro. We chose these currencies as it is rare for EU countries

Results
As seen above, we created Linear regression plots and calculated R2 scores for the percentage changes
between the Pound the Euro, and then the Krone and the Euro. It is interesting to note that the plots for the
GBP vs. EUR pass the randomness test, however they produce a R2 value of only 0.34. With 10 KFolds, this
R2 score slightly decreases to 0.33. Although there is a positive relationship between the change in the
Pound and a change in the Euro, only around 34% of the variability in EUR can be explained by GBP.

To put this into perspective, we conducted the same tests on the Danish Krone and the Euro. Denmark is
country that is part of the European Union yet chooses to use their own currency, so this is perfect for
comparison against the Pound. DKK against EUR shows an R2 value of 0.99, meaning 99% of the
variability in EUR can be explained by GBP. This is fantastic, except after a further look at the data
through 3 randomness tests, we see that this is because the Krone and the Pound are not random. In fact,
with further research, our results prove the fact that the Krone is pegged to the Euro. According to the
Danish National Bank, "...the value of the Danish krone is to be kept stable against the euro", due to their
monetary policy.

Source:
https://www.nationalbanken.dk/en/about_danmarks_nationalbank/frequently_asked_questions/Pages/Denmarks
fixed-exchange-rate-
policy.aspx#:~:text=Denmark%20conducts%20a%20fixed%20exchange%20rate%20policy%20against%20the%20

Δ Δ

Δ Δ

Δ Δ

https://www.nationalbanken.dk/en/about_danmarks_nationalbank/frequently_asked_questions/Pages/Denmarks-fixed-exchange-rate-policy.aspx#:~:text=Denmark%20conducts%20a%20fixed%20exchange%20rate%20policy%20against%20the%20euro,by%20way%20of%20monetary%20policy


to use their own, and we wanted to see if any relationships existed. With these multiple features, we were
hoping to be able to predict the movement in the Euro.

EUR_pct_change = 0.00 + 0.04 BGN_pct_change + 0.33 CZK_pct_change + 0.10 HRK_pct_change 
+ 0.07 HUF_pct_change + 0.09 PLN_pct_change + 0.03 RON_pct_change + 0.15 SEK_pct_change 
r2 = 0.86 

Random Forest Regressor on multiple features

In [259… def disp_regress(df, x_feat_list, y_feat, verbose=True): 
    """ linear regression, displays model w/ coef 
     
    Args: 
        df (pd.DataFrame): dataframe 
        x_feat_list (list): list of all features in model 
        y_feat (list): target feature 
        verbose (bool): toggles command line output 
         
    Returns: 
        reg (LinearRegression): model fit to data 
    """ 
    # initialize regression object 
    reg = LinearRegression() 
 
    # get target variable 
    x = df.loc[:, x_feat_list].values 
    y = df.loc[:, y_feat].values 
 
    # fit regression 
    reg.fit(x, y) 
 
    # compute / store r2 
    y_pred = reg.predict(x) 
     
    if verbose: 
        # print model   
        model_str = y_feat + f' = {reg.intercept_:.2f}' 
        for feat, coef in zip(x_feat_list, reg.coef_): 
            model_str += f' + {coef:.2f} {feat}' 
        print(model_str) 
 
        # compute / print r2 
        r2 = r2_score(y_true=y, y_pred=y_pred) 
        print(f'r2 = {r2:.3}') 
     
    return reg 

In [260… eu_df = merge_df_by_years(2010, 2022, symbols='EUR,BGN,HRK,CZK,HUF,PLN,RON,SEK', base='U
eu_pct_df, pct_concated = calc_pct_change(eu_df) 
 
#calculating the r2 score of our model on our list of percent change x values 
currencies = [x+'_pct_change' for x in ['BGN','CZK','HRK','HUF','PLN','RON','SEK']] 
eu_r2 = disp_regress(eu_pct_df[1:], x_feat_list = currencies, y_feat = 'EUR_pct_change') 

In [261… def disp_rfr_regress(df, x_feat_list, y_feat, verbose=True): 
    """ random forrest regressor on multiple features, displays model w/ coef 
 
    Args: 
        df (pd.DataFrame): dataframe 
        x_feat_list (list): list of all features in model 
        y_feat (list): target feature 
        verbose (bool): toggles command line output 
         



    Returns: 
        rand_forest_regressor (RandomForestRegressor): model fit to data 
    """ 
     
     
    # initialize regression object 
    rand_forest_regressor = RandomForestRegressor() 
 
    # get target variable 
    x = df[1:].loc[:, x_feat_list].values 
    y = df[1:].loc[:, y_feat].values 
 
    # fit regression 
    rand_forest_regressor.fit(x, y) 
     
    return rand_forest_regressor 

In [262… # giving all Non-Euro EU currencies as x features 
y_feat = 'EUR_pct_change' 
x_feat_list = currencies 
 
rand_forest_regressor = disp_rfr_regress(eu_pct_df, x_feat_list, y_feat) 

In [263… def plot_feat_import(feat_list, feat_import, sort=True, limit=None): 
    """ plots feature importances in a horizontal bar chart 
     
    Args: 
        feat_list (list): str names of features 
        feat_import (np.array): feature importances (mean gini reduce) 
        sort (bool): if True, sorts features in decreasing importance 
            from top to bottom of plot 
        limit (int): if passed, limits the number of features shown 
            to this value     
    """ 
     
    if sort: 
        # sort features in decreasing importance 
        idx = np.argsort(feat_import).astype(int) 
        feat_list = [feat_list[_idx] for _idx in idx] 
        feat_import = feat_import[idx]  
         
    if limit is not None: 
        # limit to the first limit feature 
        feat_list = feat_list[:limit] 
        feat_import = feat_import[:limit] 
     
    # plot and label feature importance 
    plt.barh(feat_list, feat_import) 
    plt.gcf().set_size_inches(5, len(feat_list) / 2) 
    plt.xlabel('Feature importance\n(Mean decrease in MSE across all Decision Trees)') 
    plt.show() 

In [264… plot_feat_import(x_feat_list, rand_forest_regressor.feature_importances_, limit=10) 



Removing the Bulgarian Lev, as is pegged to the Euro

It will always be the most influential feature, so we need to remove it. We are also removing the Czech
Koruna, as it was pegged to the Euro from 2010-2017 Source) Source

In [265… y_feat = 'EUR_pct_change' 
# removing the bulgarian lev and czech koruna 
non_bc_list = currencies[2:] 
# new r2 value, without the Lev and koruna 
rand_forest_regressor = disp_rfr_regress(eu_pct_df, non_bc_list, y_feat) 

In [266… plot_feat_import(non_bc_list, rand_forest_regressor.feature_importances_, limit=10) 

In [267… # initialize regression object 
reg = LinearRegression() 
 
# get target variable 
x = eu_pct_df.loc[:, non_bc_list].values[1:] 
y = eu_pct_df.loc[:, y_feat].values[1:] 
 
# fit regression 
reg.fit(x, y) 
 

https://www1.oanda.com/currency/iso-currency-codes/BGN#:~:text=The%20Lev%20is%20pegged%20to,current%20Bulgarian%20Lev%20(BGN
https://www.barrons.com/articles/czech-currency-stronger-unpegged-from-euro-1491482433


# compute / store r2 
y_pred = reg.predict(x) 

In [268… # check independence 
errors = y - y_pred 
plt.scatter(x = range(len(y)), y = errors) 
plt.xlabel('index') 
plt.ylabel('errors'); 

In [269… # check constant variance (HRK_pct_change) 
plt.scatter(x = x[:,0], y = errors) 
plt.xlabel('HRK_pct_change') 
plt.ylabel('errors'); 



In [270… # check constant variance (HUF_pct_change) 
plt.scatter(x = x[:,1], y = errors) 
plt.xlabel('HUF_pct_change') 
plt.ylabel('errors'); 

In [271… # check constant variance (PLN_pct_change) 
plt.scatter(x = x[:,2], y = errors) 
plt.xlabel('PLN_pct_change') 
plt.ylabel('errors'); 



In [272… # check constant variance (RON_pct_change) 
plt.scatter(x = x[:,3], y = errors) 
plt.xlabel('RON_pct_change') 
plt.ylabel('errors'); 

In [273… # check constant variance (SEK_pct_change) 
plt.scatter(x = x[:,4], y = errors) 
plt.xlabel('SEK_pct_change') 
plt.ylabel('errors'); 



EUR_pct_change = -0.00 + 0.15 HRK_pct_change + 0.14 HUF_pct_change + 0.19 PLN_pct_change 
+ 0.04 RON_pct_change + 0.21 SEK_pct_change 
r2 = 0.813 

In [274… # check normality 
stats.probplot(errors, dist="norm", plot=py) 
py.show() 

In [275… eu_r2 = disp_regress(eu_pct_df[1:], x_feat_list = non_bc_list, y_feat = 'EUR_pct_change'



Results
As seen above, we created Multiple Linear regression plots and calculated the R2 scores for the percentage
changes between the non-Euro EU countries and the Euro. These 7 countries were the Bulgaria, Croatia,
Czech Republic, Hungary, Poland, Romania, and Sweden. Denmark was not included in this calculation as
they are on the opt-out system, not in the non Euro area.

Through a Multiple Linear Regression, we found that these features have a 0.86 r2. With a value this high, we
deployed a feature importance graph and found that the Bulgarian had an extremely significant feature
importance. Through further research, this currency was found to be pegged on the Euro, with Bulgaria
having a plan to adopt the Euro by 2024. Interestingly enough, the Czech Koruna was pegged to the Euro
from 2010-2017 but did not have a large feature importance.

Next, the Lev and Koruna were removed and the MLR was run on the other currencies. Producing an r2
value of 0.81, this was extremely interesting as it shows a strong level of variability explanation. The Croatian
Kuna, with the highest level of feature importance, does not have a peg to the Euro, conveying a very
important affect. These non-Euro EU countries excluding Bulgaria and Czech Republic show a significant
change in line with a change in the Euro.

Source: https://european-union.europa.eu/institutions-law-budget/euro/countries-using-euro_en

Discussion
Based on the outputs we were able to produce, using both Linear and Multiple Regression, our group
considers this a comprehensive dive into the affect of currencies on each other. The regression models we
built take into account the percent change of exchange rates. Most interestingly, we were able to analyze
the relationship between Non-Euro using EU countries and the Euro. With the European Union being a
political collection of 27 countries, some of which do not implement the common currency, we felt that the
changes in the multiple features EU currencies would be able to give us a better understanding as to how
the Euro moved. Most notabily, we were able to narrow down to the currencies of Croatia, Poland, Romania,
Hungary, and Sweden. These countries do not have pegs to any other currencies or standards, yet together
they strongly model the movement of the Euro.

To test the validity of our findings, we would simulate several investment decisions according to our model
and look at the overall ROI at the end. For example, if we saw drastic downward movement in several
currencies from above that explain variability in the Euro, we would simulate a sell and see if that was the
correct decision afterward. Furthermore, because or models are linear and failed some the assumptions of
independence, constant variance, and normality, our results can't be immediately taken for granted or
completed trusted. Because of this, we believe that in the future, different models should be chosen that
don't rely on these assumptions. Perhaps, we would use some forecasting model that was built for time-
series data like the ARIMA model. This would allow us to address that underlying issue that time itself might
be an influential variable that we weren't able to account for.

Takeaway
Altogether, we feel that we have made good progress on exploring the effect of different currencies on each
other in the Foreign Exchange market. To be utilized in the future, we need better economic understanding
and currency exchange prediction data.

https://european-union.europa.eu/institutions-law-budget/euro/countries-using-euro_en



